NAME:	PERIOD:	DATE:
LAR PARTNERS.		LAR #28

LIGHT VERSUS DARK OBJECTS

PHENOMENON:

Glacier National Park is warming at a faster rate than other parts of the world, https://youtu.be/ur4I8tYnxP4

<u>INTRODUCTION</u> The earth's surface is constantly absorbing and giving off energy. The characteristics of the earth's surface determine what happens to the incoming solar radiation (insolation).

SEP's: Throughout this lab, the following SEP's (Science Engineering Practices) will be touched upon: MS-PS4-2.. Develop and use a model to describe phenomena, that waves are reflected, absorbed, or transmitted through various materials.

APPROXIMATE TIME 2 periods

MATERIALS:

Black and silver cups with insulated lids 2 thermometers Heat lamp with base Graph paper

PROCEDURE:

- 1. Arrange the black and silver cups as shown in the diagram. Be sure the two cups are an equal distance from the lamp.
- 2. Turn on the lamp and read the thermometers at one-minute intervals for 10 minutes. Record the readings in the data table.
- 3. After 10 minutes, turn off the lamp and MOVE IT AWAY FROM THE CANS.
- 4. Continue to take temperature readings every minute for another 10 minutes recording them on the data table.
- 5. Graph the data for both cups on the same set of axes. Label each line.
- 6. Answer questions 1-7.

Data Table

	LAMP ON		<u>LAMP OFF</u>							
TIME (Min)	BLACK CUP (Temp °C)	SILVER CUP (Temp °C)	TIME (Min)	BLACK CUP (Temp °C)	SILVER CUP (Temp °					
0			11		C)					
1			12							
2			13							
3			14							
4			15							
5			16							
6			17							
7			18							
8			19							
9			20							
10				stop						

LABORATORY QUESTIONS (Answer using complete sentences).

1. Why was it important to place each can the same distance f	
2. Why was it necessary to move the lamp away from the can	s and not just simply turn it off?
3. By what process did the light travel from the bulbs to the ca	ans?
4. Which can absorb the most energy?	How did you know?
5. Which can re-radiated the most energy?	How did you know?

6. Hov	w do tl	ne wav	veleng	ths ab	sorbed	by the	e cans	differ	from	the wa	veleng	gths re	-radia	ted fro	m the	cans?			
7. Bes	ides c	olor, v	vhat ot	ther fa	ctor at	fects l	now m	uch li	ght is a	absorb	ed by	an obj	ect?						
8. Hov	w will	light v	versus	dark s	surface	es affe	et glob	oal wa	rmingʻ	?									
CON	CLUS	ION:	Write	a shor	t para	graph	descri	bing w	hat vo	ou lear	ned in	this la	ab base	ed on	vour d	ata an	d		
observ	ations	S.			<u> </u>									•					
																		•	
																		•	
			1																
																		 	
																		$\vdash \vdash \vdash$	
																		\vdash	
																		\vdash	
																		$\vdash \vdash \vdash$	
																		\vdash	
																		$\vdash \vdash \vdash$	