| NAME:                                                                                                                       | PERIOD:                                                                                  | _DATE:                                        |
|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------|
| LAB PARTNERS:                                                                                                               |                                                                                          | LAB #27                                       |
| H                                                                                                                           | EAT TRANSFER                                                                             |                                               |
| PHENOMENON: Conduction in metals <a href="https://youtu.be/6byq">https://youtu.be/6byq</a>                                  | NP3Tif0                                                                                  |                                               |
| INTRODUCTION Energy is constantly moving between objects of The transfer of heat energy causes all changes to               |                                                                                          |                                               |
|                                                                                                                             | llowing SEP's (Science Engineering F<br>ct an investigation of the properties of<br>ses. | *                                             |
| APPROXIMATE TIME : 2 Periods                                                                                                |                                                                                          |                                               |
| MATERIALS 2 Insulated Styrofoam cups with covers 2 Thermometers 1 Aluminum bar 1 Wood spoon or popsicle stick               | Boiling Water<br>Room Temperature Water<br>Graph Paper<br>1 Metal spoon                  | Beaker Butter<br>Stopwatch<br>1 Plastic spoon |
|                                                                                                                             | OILING WATER IN THIS LABORAT<br>OT TO TOUCH ALUMINUM BAR OR                              |                                               |
| PROCEDURES Fill the beaker with boiling wand 1 plastic spoon for this experiment. You which is the worst conductor of heat. |                                                                                          |                                               |
| 2. Write up your procedures and the conc                                                                                    | clusion of your results                                                                  |                                               |
|                                                                                                                             |                                                                                          |                                               |
|                                                                                                                             |                                                                                          |                                               |
|                                                                                                                             |                                                                                          |                                               |
|                                                                                                                             |                                                                                          |                                               |

## **LABORATORY QUESTIONS**

| Whice<br>Whice | ch cup<br>ch cup | gaine    | d heat  | ener    | gy?_    |         |        |         |        |        |         | <del>-</del><br> |        |        |        |        |        |                  |
|----------------|------------------|----------|---------|---------|---------|---------|--------|---------|--------|--------|---------|------------------|--------|--------|--------|--------|--------|------------------|
| By w           | vhat pi          | rocess   | was th  | ne hea  | at tran | ısferre | ed bet | ween    | cups?  |        |         |                  |        |        |        |        |        | _                |
| Com            | ipare t          | he amo   | ount o  | f enei  | rgy lo  | st by   | one cı | ıp wit  | th the | amou   | nt of   | energ            | y gain | ed by  | the o  | ther c | up.    | _                |
| Expl           | lain wl          | hy all t | the hea | at lost | t by o  | ne cup  | p WA   | S NO    | T gair | ned by | y the o | other o          | cup.   |        |        |        |        | <b>-</b>         |
| How            | could            | l you c  | hange   | the e   | equipr  | nent t  | o incr | ease t  | he rat | e of h | eat tra | ansfer           | from   | the h  | ot cup | to th  | e colo | _<br>  cup?<br>_ |
| CON            | NCLU:            | SION:    | Using   | g a sh  | ort pa  | ragraj  | ph wri | ite abo | out wl | nat yo | u lear  | ned ii           | n this | lab.   |        |        |        | _                |
|                |                  |          |         |         |         |         |        |         |        |        |         |                  |        |        |        |        |        | _<br>_<br>_      |
|                |                  |          |         |         |         |         |        |         |        |        |         |                  |        |        |        |        |        | _                |
|                |                  |          |         |         |         |         |        |         |        |        |         |                  |        |        |        |        |        | _                |
|                |                  | differe  |         |         |         |         |        |         | d cold | cup,   | graph   | the re           | ecorde | ed dat | a drav | ving b | ooth c | –<br>urves       |
|                |                  |          |         |         |         |         |        |         | d cold | cup,   | graph   | the re           | ecorde | ed dat | a drav | ving b | ooth c | urves            |
|                |                  |          |         |         |         |         |        |         | d cold | cup,   | graph   | the re           | ecorde | ed dat | a drav | ving b | ooth c | urves            |
|                |                  |          |         |         |         |         |        |         | d cold | cup,   | graph   | the re           | ecorde | ed dat | a drav | ving b | ooth c | urves            |
|                |                  |          |         |         |         |         |        |         | d cold | cup,   | graph   | the re           | ecorde | ed dat | a drav | ving b | ooth c | urves            |
|                |                  |          |         |         |         |         |        |         | d cold | cup,   | graph   | the re           | ecorde | ed dat | a drav | ving b | ooth c | urves            |
|                |                  |          |         |         |         |         |        |         | d cold | cup,   | graph   | the re           | ecorde | ed dat | a drav | ving b | ooth c | urves            |
|                |                  |          |         |         |         |         |        |         | d cold | cup,   | graph   | the re           | ecorde | ed dat | a drav | ving b | ooth c | urves            |
|                |                  |          |         |         |         |         |        |         | d cold | cup,   | graph   | the re           | ecorde | ed dat | a drav | ving b | ooth c | urves            |
|                |                  |          |         |         |         |         |        |         | d cold | cup,   | graph   | the re           | ecorde | ed dat | a drav | ving b | ooth c | urves            |
|                |                  |          |         |         |         |         |        |         | d cold | cup,   | graph   | the re           | ecorde | ed dat | a drav | ving b | ooth c | urves            |
|                |                  |          |         |         |         |         |        |         | d cold | cup,   | graph   | the re           | ecorde | ed dat | a drav | ving b | poth c | urves            |
|                |                  |          |         |         |         |         |        |         | d cold | cup,   | graph   | the re           | ecorde | ed dat | a drav | ving b | poth c | urves            |
|                |                  |          |         |         |         |         |        |         | d cold | cup,   | graph   | the re           | ecorde | ed dat | a drav | ving b | poth c | urves            |
|                |                  |          |         |         |         |         |        |         | d cold | cup,   | graph   | the re           | ecorde | ed dat | a drav | ving b | poth c | urves            |

## **PROCEDURES 2**

- 1. Carefully slide each thermometer through the slit in the covers of the calorimeters. Then slide the aluminum bar through the larger slots in both covers.
- 2. Fill one cup approximately 3/4 full with room temperature water.
- 3. Your instructor will now come to each lab group and pour the boiling water into the second cup.
- 4. Place the two covers with the bar and thermometers into the hot and cold water cups.
- 5. When the thermometer in the hot cup STOPS RISING, record this temperature under the time 0 on the data table. At exactly the same time record the temperature of the cold cup.
- 6. Continue taking temperature readings for both cups at 1-minute intervals for a total of 20 minutes.
- 7. Think about the hot and cold water cups. What do you think will happen in this experiment? Write a SHORT HYPOTHESIS on what may happen?
- 8. Using two different colored pencils for hot cup and cold cup, graph the recorded data drawing both curves on the same graph. Label each curve.
- 9. Answer lab questions 1-8.



## **DATA TABLE**

| TIME IN MINUTES            | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
|----------------------------|---|---|---|---|---|---|---|---|---|---|----|
| Temperature of Hot Cup °C  |   |   |   |   |   |   |   |   |   |   |    |
| Temperature of Cold Cup °C |   |   |   |   |   |   |   |   |   |   |    |

| TIME IN MINUTES            | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |  |
|----------------------------|----|----|----|----|----|----|----|----|----|----|--|
| Temperature of Hot Cup °C  |    |    |    |    |    |    |    |    |    |    |  |
| Temperature of Cold Cup °C |    |    |    |    |    |    |    |    |    |    |  |