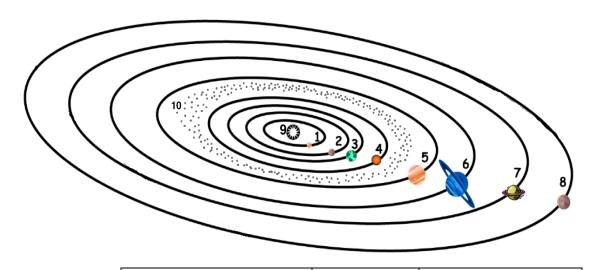

EARTH SCIENCE UNIT 9-NOTES ASTRONOMY

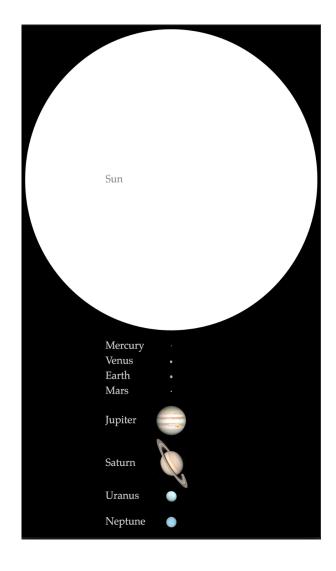

YOUR PLANET
YOUR INHERITANCE
YOUR LEGACY

THE SOLAR SYSTEM

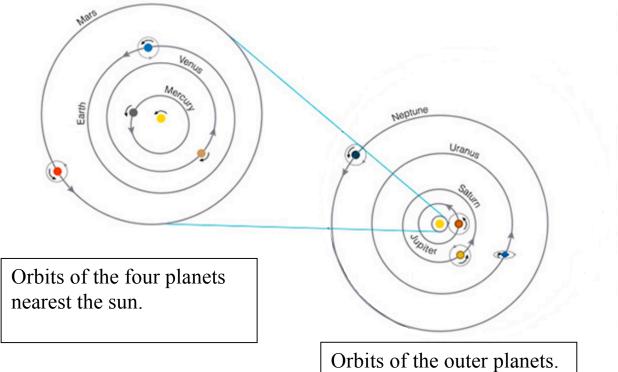
a. Cele	stial Body:
i.	Examples:
o. MAI	N COMPONENTS/MEMBERS OF THE SOLAR SYSTEM:
i.	1. Planets are objects that orbit the sun, have enough mass to be nearly round, are not satellites, & have removed debris and other objects from around its orbit.
ii.	Satellites are celestial bodies that orbit earth or another planet.
iii.	
	1. Small rocky bodies orbiting the sun.
iv.	
	1. Balls of frozen gases, rock and dust that orbit the sun. Jets of gas and dust form long "tails" that can be seen from earth
V.	1. Small space rocks moving through the solar system.
vi.	: 1. A meteoroid that enters Earth's atmosphere.

c. Solar System Diagram

Orbits of the planets The orbits are not drawn to scale.


	NAME OF PLANET	SYMBOL	PLANET TYPE
1			
2			
3			
4			
5			
6			
7			
8			

9				
10				


d. The Planets:

i.

Relative size of the sun and planets:

ii. Orbits of the planets and their relative distance:

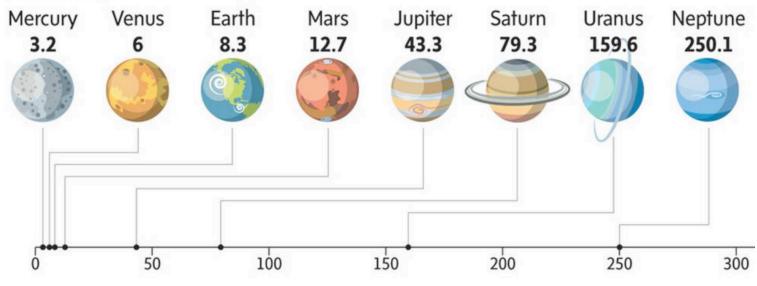
The innermost circle

represents Mars' orbit.

5

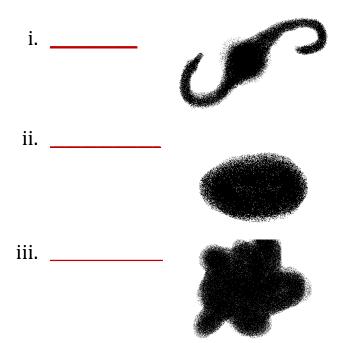
II. EARTH'S PLACE IN THE UNIVERSE

a. Light year:

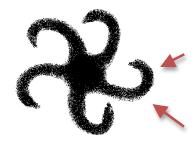

i. _____

ii. _____miles/second.

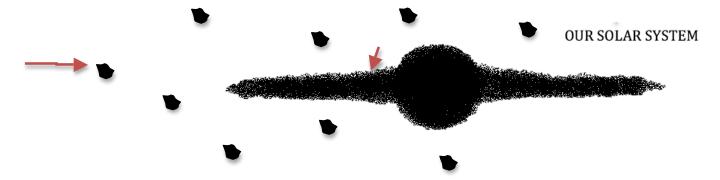
1. The time it takes sunlight to reach each planet:


So how long does light take to travel from the Sun to each planet?

(In minutes)

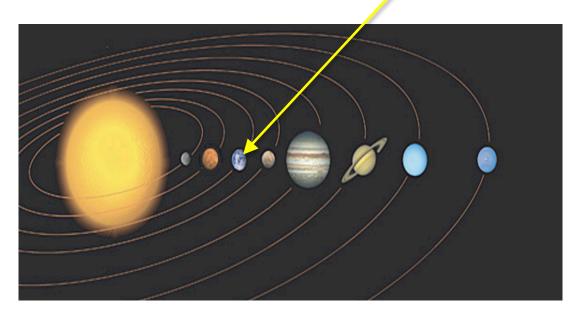


- 2. The time it takes sunlight to reach:
 - a. The nearest star _____ = ____
 - b. The brightest star _____ = ____
 - c. The nearby Andromeda Galaxy = _____
- 3. **Starlight**:
 - a. We see all night stars as they _____ when the light
 - b. When we look at distant stars and galaxies, we look back in TIME.
- 4. Galaxies:
 - a. Billions of stars held together by _____


b. Shape of galaxies:

- c. The Milky Way Galaxy:
 - i. Our sun is only one of the estimated ______ stars that make up the Milky Way Galaxy.
 - ii. The Milky Way Galaxy is a _____ galaxy.
- 1. Top View:

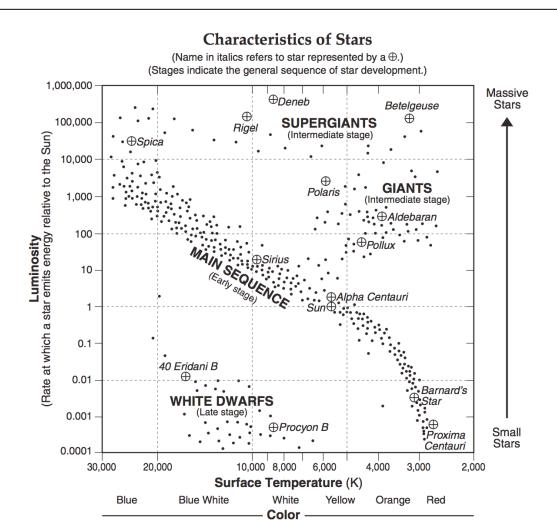
2. SIDE VIEW:



5. Levels and structure of the universe (earths place in the universe)

a. PLANET EARTH:

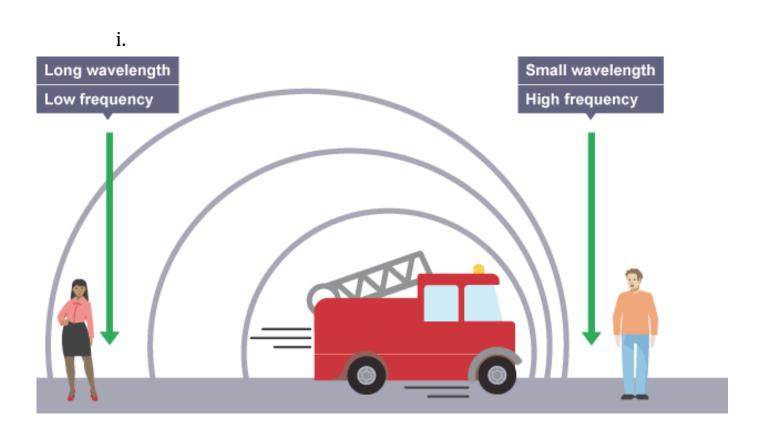
b. **OUR SOLAR SYSTEM**


c. MILKY WAY GALAXY:

d. **UNIVERSE**:

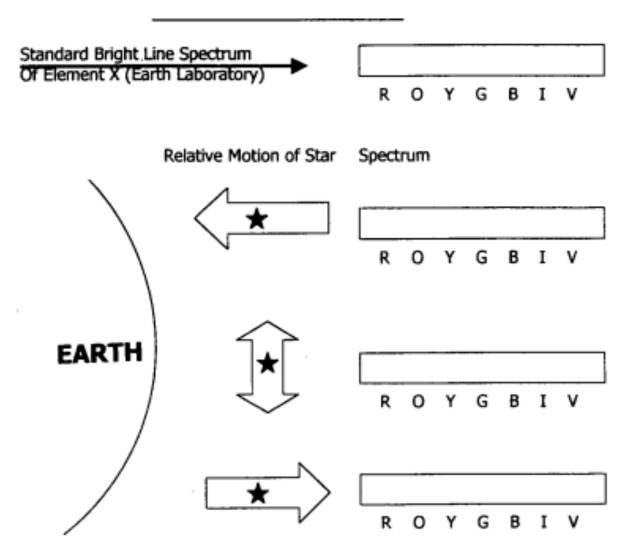
6. ESRT Page _____

Solar System Data


Celestial Object	Mean Distance from Sun (million km)	Period of Revolution (d=days) (y=years)	Period of Rotation at Equator	Eccentricity of Orbit	Equatorial Diameter (km)	Mass (Earth = 1)	Density (g/cm ³)
SUN	_	_	27 d	_	1,392,000	333,000.00	1.4
MERCURY	57.9	88 d	59 d	0.206	4,879	0.06	5.4
VENUS	108.2	224.7 d	243 d	0.007	12,104	0.82	5.2
EARTH	149.6	365.26 d	23 h 56 min 4 s	0.017	12,756	1.00	5.5
MARS	227.9	687 d	24 h 37 min 23 s	0.093	6,794	0.11	3.9
JUPITER	778.4	11.9 y	9 h 50 min 30 s	0.048	142,984	317.83	1.3
SATURN	1,426.7	29.5 y	10 h 14 min	0.054	120,536	95.16	0.7
URANUS	2,871.0	84.0 y	17 h 14 min	0.047	51,118	14.54	1.3
NEPTUNE	4,498.3	164.8 y	16 h	0.009	49,528	17.15	1.8
EARTH'S MOON	149.6 (0.386 from Earth)	27.3 d	27.3 d	0.055	3,476	0.01	3.3

7. ESRT Page 15 Practice

- Compared to terrestrial planets, Jovian planets have
 - A) smaller equatorial diameters and shorter periods of revolution
 - B) smaller equatorial diameters and longer periods of revolution
 - C) larger equatorial diameters and shorter periods of revolution
 - D) larger equatorial diameters and longer periods of revolution
- 2. Which planet has a density that is less than the density of liquid water?
 - A) Mercury
- B) Earth
- C) Mars
- D) Saturn
- 3. Which characteristic of the planets in our solar system increases as the distance from the Sun increases?
 - A) equatorial diameter
 - B) eccentricity of orbit
 - C) period of rotation
 - D) period of revolution
- Compared to the size and density of Earth, the Moon has a
 - A) smaller diameter and lower density
 - B) smaller diameter and higher density
 - C) larger diameter and lower density
 - D) larger diameter and higher density
- 5. Which planet has completed less than one orbit of the Sun in the last 100 years?
 - A) Mars
- B) Mercury
- C) Neptune
- D) Uranus


- 6. Which two characteristics do all Jovian planets have in common?
 - A) small diameters and low densities
 - B) small diameters and high densities
 - C) large diameters and low densities
 - D) large diameters and high densities
- Compared to Jovian planets, terrestrial planets have
 - A) larger masses
 - B) larger equatorial diameters
 - C) shorter periods of revolution
 - D) shorter periods of rotation
- 8. Which planet is located approximately ten times farther from the Sun than Earth is from the Sun?
 - A) Mars
- B) Jupiter
- C) Saturn
- D) Uranus
- 9. Which object in our solar system has the greatest density?
 - A) Jupiter
- B) Earth
- C) the Moon
- D) the Sun
- 10. Which planet would float if it could be placed in water?
 - A) Mercury
- B) Earth
- C) Saturn
- D) Pluto

b. The Doppler Effect:

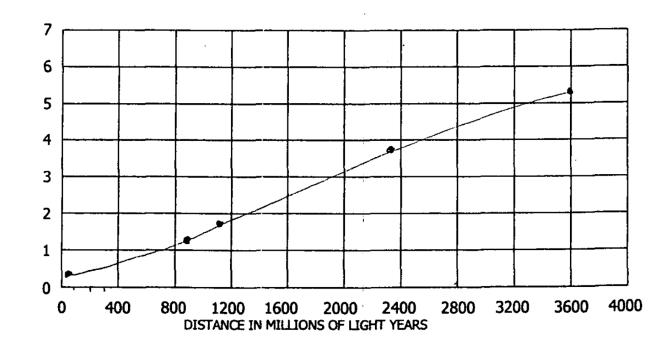
ii. RED SHIFT - BLUE SHIFT

- 1. Red Shift and Blue Shift describe how light changes as objects in space (such as stars or galaxies) move closer or farther away from us.
- 2. Visible light is a spectrum of colors (like a rainbow).
 - a. When an object moves _____ from us, the light is shifted to the _____ end of the spectrum and its wavelength gets _____.
 - b. When an object is moving ______ to us, the light is shifted to the _____ end of the spectrum and the wavelength gets _____.

- 3. The Big Bang Theory
 - a. In the late 1920'S, Edwin Hubble discovered that ALL galaxies were "red shifted" when viewed from earth.

This meant that a	l galaxies were
	, and thus, the universe must
be	

- b. This led to the theory that the universe began as a cosmic explosion that ocured 15-20 billion years ago. The universe we live in today has evolved from this explosion of matter and energy.
- c. An echo of background radiation can still be detected by radio telescope.


12

d. The data table below shows the distances of some galaxies from Earth. It also shows the "red shift" of each galaxy and how many units of red shift are exhibited by each galaxy.

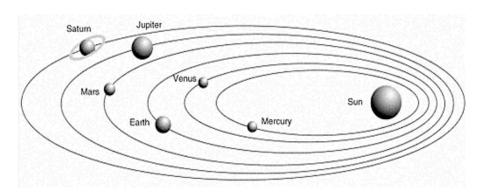
1.

GALAXY	DISTANCE (light years)	RED SHIFT (arbitrary units) VIOLET RED 0 1 2 3 4 5 6
VIRGO	70 000 000	0 1 2 3 4 5 6
URSA MAJOR 1	900 000 000	
LEO	1 100 000 000	
BOOTES	2 300 000 000	
HYDRA	3 600 000 000	

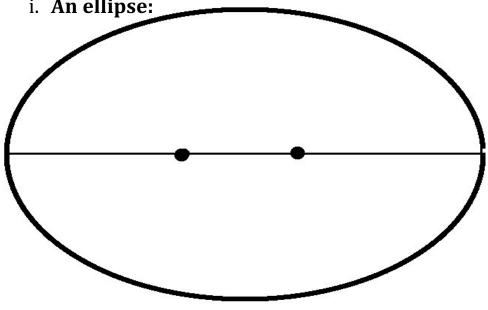
2.

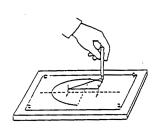
3. The amount of "red shift" is a result of the _____ at which the galaxy is moving.

4. CONCLUSION: As the distance from earth ______, the amount (or degree) of red shift of a galaxy ______. This indicates that


5.

KEPLER'S LAWS OF PLANETARY MOTION: III.


a. LAW 1: _____



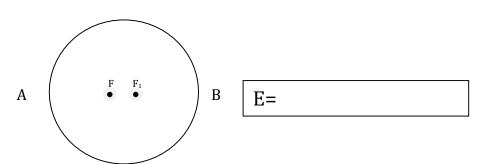
Johannes Kepler

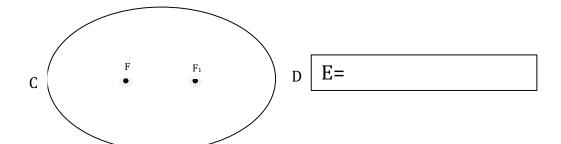
i. An ellipse:

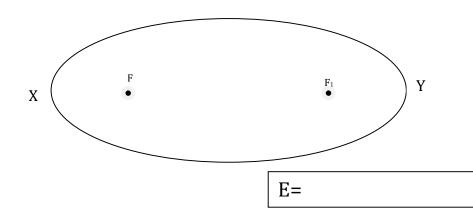
- ii. ECCENTRICITY: a measure of the "shape" of an ellipse. The circular it is, the _____ eccentric it is.
- iii. Formula:

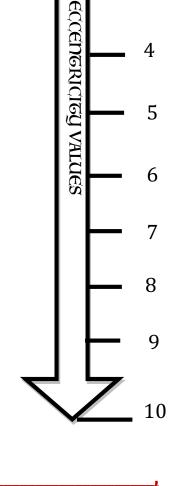
ESRT Page __

iv. Sample Problem - Based on the ellipse above:

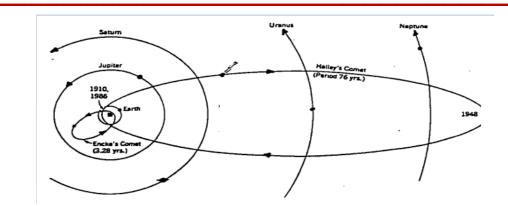

- 0

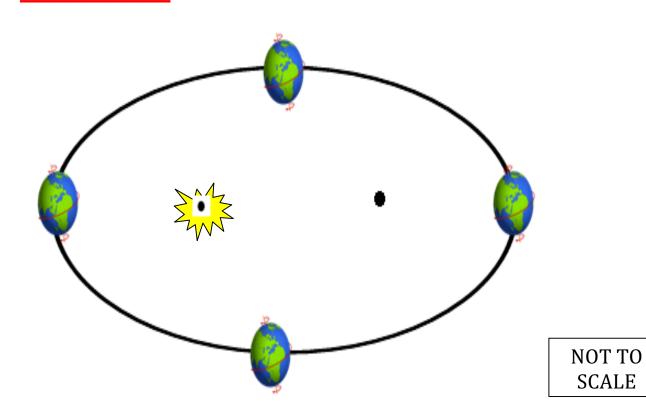

1


2


3

v. **Eccentricity Sample Problems** (Range of values)





vi. **Relationship**: _

vii.

b. **LAW 2** – _____

i.	PERIHELION:	

ii. APHELION:

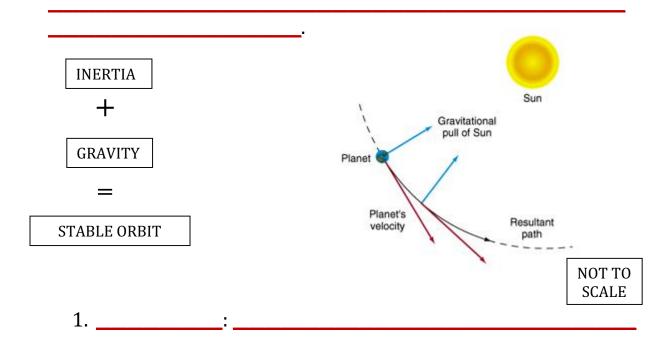
c. LAW 3:		

- i. Farther planets have _____ orbital paths and _____ orbital speeds
- ii. Closer planets have _____ orbital paths and _____ orbital speeds.

IV. **GRAVITY**:

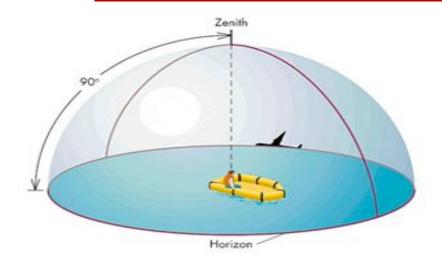
a. Hewton 5 Daw of alaste	a.	Newton	'S	Law	of	Gra	vit
---------------------------	----	--------	----	-----	----	-----	-----

and will pull all other objects with a certain gravitational force.

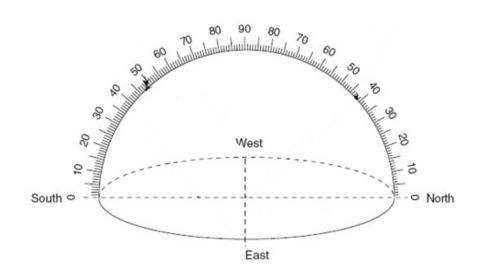


11.	

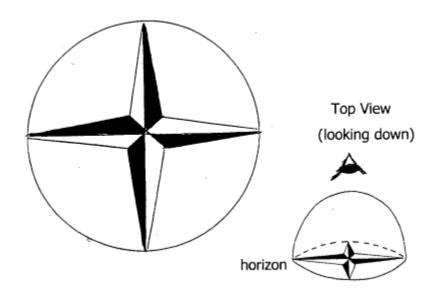
iii.			

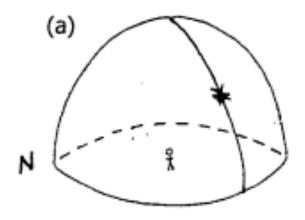

b. Gravity and Inertia:

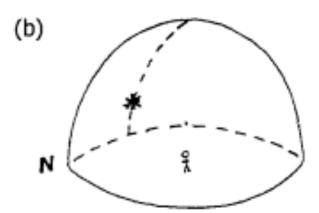
i. Newton's law of Inertia states that _____



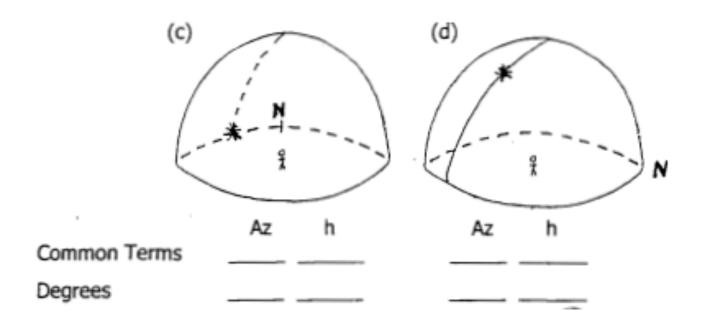
V. CELESTIAL OBSERVATIONS

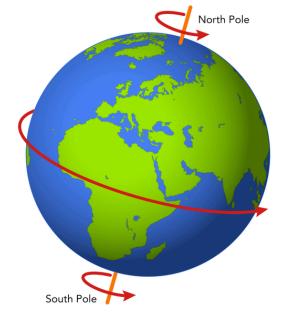

- a. CELESTIAL OBJECT:
 - i. Examples: _____
- b. **CELESTIAL SPHERE** = _____




- i. **Zenith**:
- ii. **HORIZON**:
- c. Location on the celestial sphere: **THE HORIZON SYSTEM**
 - i. Altitude: _____

d. **AZIMUTH** = _____

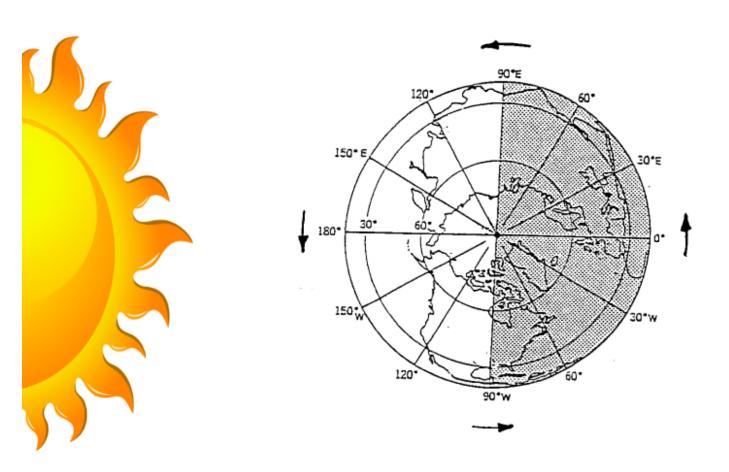


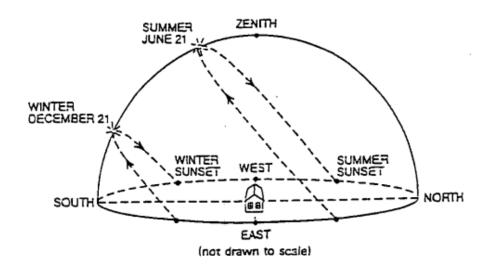

Common Terms Degrees Az h

Az h

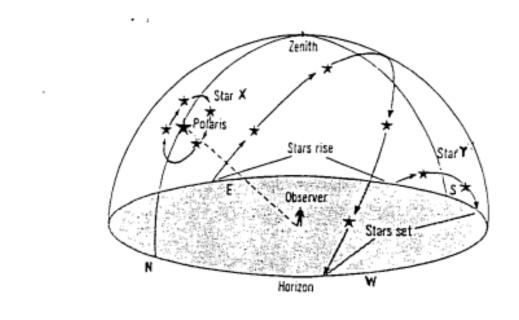
- e. **ROTATION**: _____
 - i. Earth's:
 - 1. Direction of rotation:

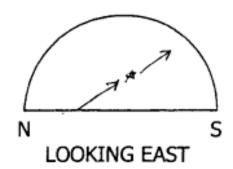
____to ____

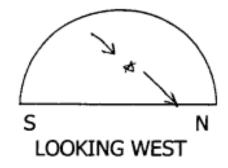


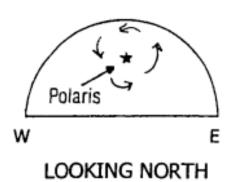

- 2. Angular rate of Rotation: THINK One complete rotation
 - a. _____ degrees
 b. ____ hours

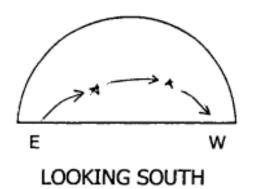
 - c. **Rate** = _____

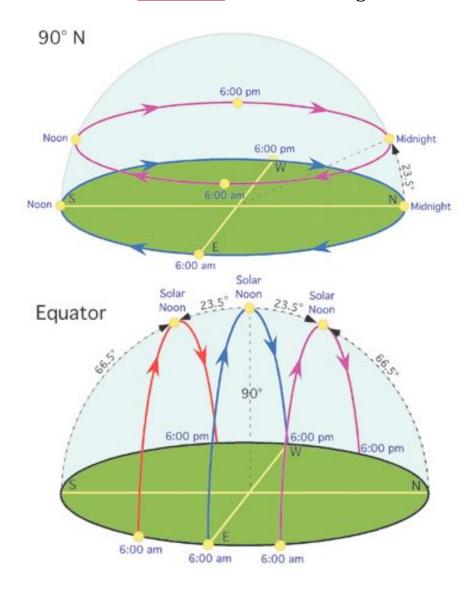

f. Effects of earth's rotation:

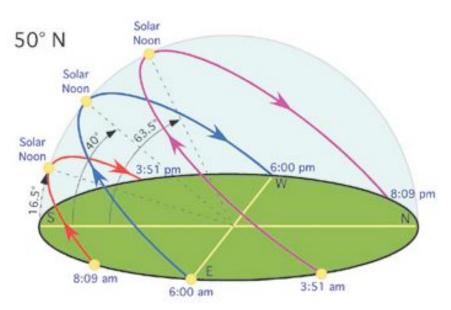

i. Day and Night

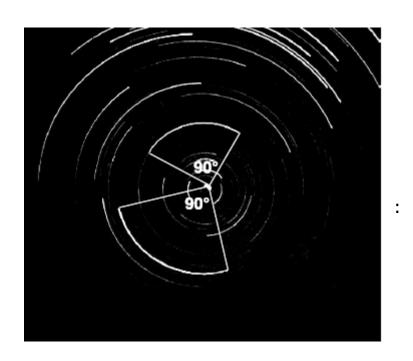





h. APPARENT DAILY MOTION OF THE STARS:

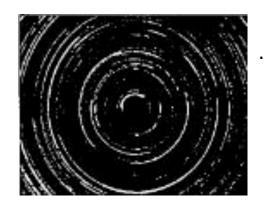




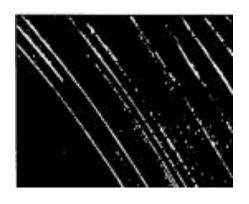

i. The apparent daily motion of celestial objects (like stars) changes when the observer's _____ on Earth changes.

NO STARS RISE OR SET!

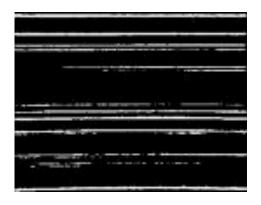
j. _____ – time- exposed photographic images that shows the apparent motion of stars; they appears as blurry lines across the film.

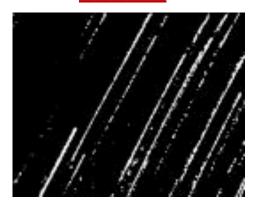


Time Exposure hours


Angular distance of star trails

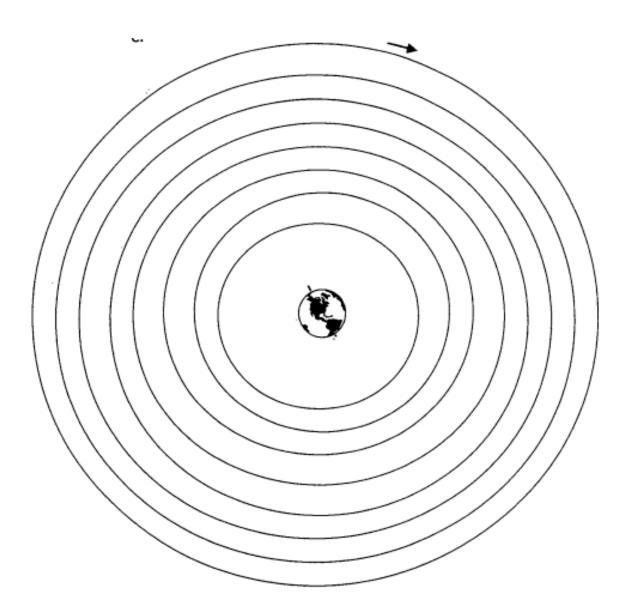
U


STAR TRAIL PHOTOGRAPHS LOOKING NORTH, SOUTH, EAST, AND WEST.


A:

C: _____

B.



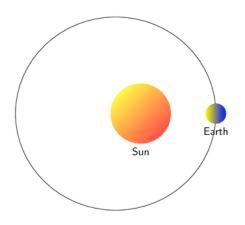
D.

VI. MODELS OF THE UNIVERSE

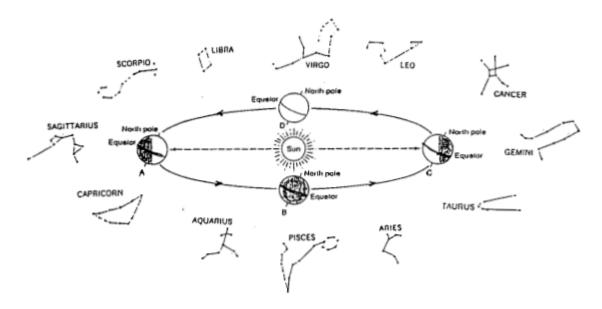
a.		
	i.	About 2000 years ago, the Greek astronomer, Claudius Ptolemy developed a detailed model of the universe based on the idea of revolving spheres.
	ii.	In this model of the universe, the was at the center and all heavenly bodies moved around in
	iii.	In Ptolemy's geocentric model:
		1 is in the and doesn't move.
		2. The are located on a transparent sphere that rotates once each day from east to west around Earth.
		3. The, the, and each are carried by separate spheres of different sizes. These spheres also rotate east to west around earth (However, they rotate at slightly slower speeds than the sphere of stars and therefore have a general eastward drift relative to the stars. This explained the yearly cycle of nighttime stars.)
		4. Each planet is located on an "epicycle" (or "epicircle" that also rotates. So as each planet moves around Earth on its sphere, it is also moving or rotating on its epicycle. This explained the strange "retrograde motion" of the planets relative to background stars. That is, the planets seemed to move backwards compared to the stars when you observed them for several weeks.)
	iv.	This model was accepted for almost 1400 years because it explained celestial observations made from Earth

v. Ptolemy's GEOCENTRIC MODEL OF THE UNIVERSE:

- vi. The geocentric model does NOT explain terrestrial (Earth) observations such as:
 - 1. _____
 - 2. ______


b. :

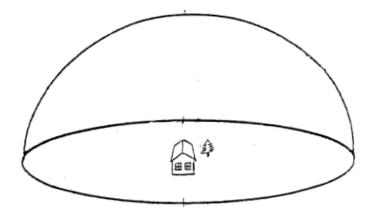
i.	In the 1500's a new model of the universe was proposed in a book by the Polish astronomer Nicholas Copernicus.			
	In this model of the universe, the was at the center.			
111.	Copernicus' heliocentric model can be summarized as follows:			
	1. The is located in the of the system and does NOT move.			
	2. The are located on a stationary / unmoving, transparent sphere. The sphere is a great distance from the sun.			
	3. The, including, move in around the sun.			
	4. The moves in a circle around Earth.			
	5. Earth rotates on its axis from to each day.			
iv.	Copernicus' heliocentric model does NOT explain the apparent cyclic variations in the size of the Sun and the cyclic variation in the orbital speeds of the planets. This is because in Copernicus' heliocentric model,			
Helio	ocentric Model (2 nd Version)			
i.	In 1609, Johannes Kepler published a book which included his first two "laws" of planetary motion". These laws explain why the apparent size of the sun changed and why the speed of a planet changes as it orbits the sun.			
ii.	This is because			


c.

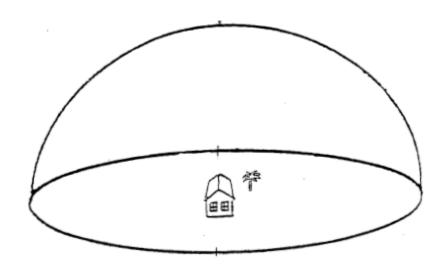
VII. **REVOLUTION**: _____

- a. Earth's angular rate of revolutionTHINK One complete revolution:
 - 1. _____ degrees
 - 2. _____ days
 - 3. Rate: _____

- b. Effects of earth's Revolution:
 - i. Nighttime constellations change in a yearly cycle.



- ii. _____: groups of stars that form patterns of imaginary things such as animals, legendary heroes, and mythological Gods.
- iii. _____: a band of 12 constellations that forms a background for the sun as seen from the revolving earth.
- iv. Complete the data table below based on the diagram above.


POSITION	SEASON	CONSTELLATIONS VISABLE AT NIGHT
OF EARTH	SEASON	CONSTELLATIONS VISABLE AT NIGHT
A		
В		
С		
D		

VIII. SEASONS OF THE YEAR -

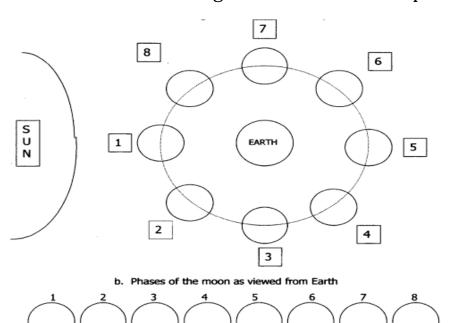
- a. Causes:
 - i. Earth _____ around the sun
 - ii. Earth is ______/ inclined on its axis ______.
 - iii. Earth's axis is always pointed in the _____ direction
 - iv. The apparent path of the sun _____ with the seasons.
 - v. The intensity (strength) of insolation is _____ when sunlight (insolation) is perpendicular to the surface striking at ____ because the sunlight is concentrated in the smallest possible space.
 - vi. As the angle of insolation _____, the intensity of insolation
- b. The apparent path of the sun changes with the _____ and with
 - i. NYS: _____ Latitude

ii. Equator _____ Latitude

IX.

c. LUNAR TOPOGRAPHY - Surface features of the moon.

- i. _____: Bowl-shaped depressions formed primarily as a result of the impact of meteors.
 - 1. There are many more craters on the moon than on earth because _____
 - 2. _____ Appear as the "dark areas" on the moon's surface. Once thought to be _____.
 - 3. _____ appear as "bright streaks" that radiate from certain craters. Consist of shattered debris that was splashed out by the impact of meteors that formed the craters.
 - 4. _____ appear as the "light areas" on moon's surface. Consist of _____ and ____.


d. THE MOON'S REVOLUTION:

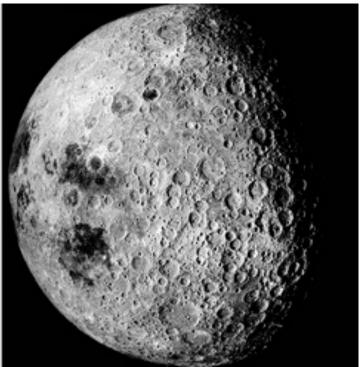
iii.

i. Period of revolution vs Cycle of phas	i.	Period	of revo	lution	vs (Cycle	of	phase	25
--	----	--------	---------	--------	------	-------	----	-------	----

	1. PERIOD OF REVOLUTION-	
	1: I ERIOD OF REVOLUTION	
	a	
	OR	
	b(ESRT Page)	
	2. CYCLE OF MOON'S PHASES –	
ii	The moon revolves around Earth in an	orbit and
11.	Earth is at one	Of Dit, allu
;;;	This causes the moon's apparent	to
111.	• • • • • • • • • • • • • • • • • • • •	to
	change in a manner.	
e. PHA	ASES OF THE MOON:	
i.	Caused by	
	Our earth view of	

1. The Moon orbiting Earth as seen from space:

2. _____ of the moon's visible, illuminated surface from _____ moon to _____ moon.
3. ____ The ____ of the moon's visible illuminated surface, from _____ moon to ____ moon.


f. THE NEAR AND FAR SIDE OF THE MOON

i. ______ – the bright side of the moon that always faces earth. It is nearly half highlands and half maria.

ii. ______ - the side of the moon that ______ faces Earth. It is mostly highlands and craters.

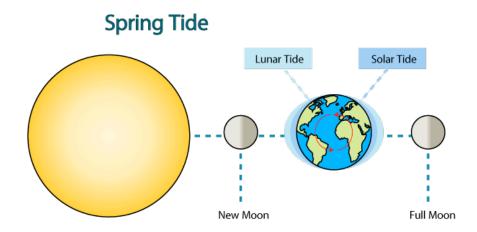
iii. The same side of the moon (the near side) always faces Earth

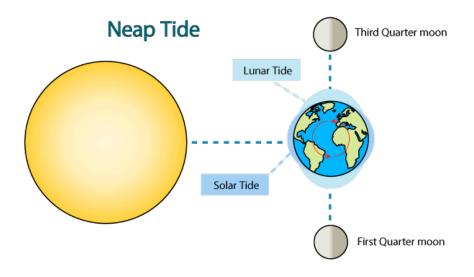
NEAR SIDE FAR SIDE

g. ECLIPSES

AS VIEWED FROM EARTH	Full Moon	NOS	Astronomy = 33
FROM SPACE	(fg)	(§ a	(133.)
	SUN	NOS NOS	Nos
	354	OF ECL	3dAL

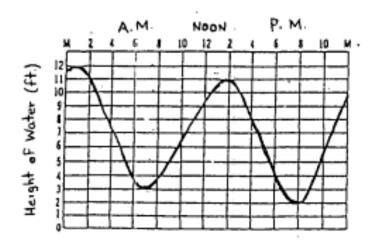
CLIPSES


X. TIDES


- a. Tides are the ______i. Caused by the moon's _____

 - ii. Affected by Earth's ______.

b. ______ : _____ tides occur during the _____ and the _____ phases when the _____, ____, and are in line.


c. ______ : _____ tides occur during the moon's _____ in line with the Earth and sun.

d. The period from high tide to high tide is normally about ____

. It is a _____ change.

- e. The next high tide will occur at _____
- f. The next low tide will occur at

UNIT 9 EXAM TOPICS

UNIVERSE

- -Structure
- -Doppler Effect

STARS

- -ESRT Page 15
- -Nuclear Fusion

PLANETS

- -ESRT Page 15
- -Terrestrial & Jovian
- -Geocentric & Heliocentric

ECCENTRICITY

- -ESRT Page 1
- -Velocity
- -Kinetic Energy
- -Gravitational Force
- -Foci
- -Major Axis

THE MOON

- -Phases
- --Draw
- --Read
- -Time required revolution vs Cycle of
- -Phases
- -Eclipses
- -Solar
- -Lunar
- -Position of celestial objects
- -Rotation and revolution

CELESTIAL SPHERES

- -Draw paths
- -Read paths
- -4 specific dates

ROTATION

- -15 degrees per hour
- -Evidence
- -Foucault Pendulum
- -Coriolis effect
- -Time zones
- -Polar view diagrams
- -Daily patterns

REVOLUTION

- -1 degree per day
- -Evidence
- -Seasons
- -Dates
- -Position
- -Latitude of direct rays
- -Duration of insolation

TIDES

- -Spring and neap
- -Position of moon, sun, earth

UNIT 8 EXAM VOCABULARY

Asteroid Impact Crater

Axis of Rotation Jovian Planet

Big Bang Theory Luminosity

Celestial Object Meteor

Comet Milky Way Galaxy

Constellation Moon

Coriolis Effect Nuclear Fusion

Doppler Effect Phases of the Moon

Eccentricity Red Shift

Eclipse Revolution

Ellipse Rotation

Focus Solar System

Foucault pendulum Star

Galaxy Terrestrial Planet

Geocentric Model Tides

Gravitation Time Zones

Heliocentric Model Universe